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The problem of calibration of local volatility model of Dupire has been
formalized. It uses genetic algorithm as alternative to regularization
approach with further application of gradient descent algorithm.
Components that solve Dupire’s partial differential equation that
represents dynamics of underlying asset’s price within Dupire model
have been built. This price depends in particular on values of volatility
parameters. Local volatility is parametrized in two dimensions (by
Dupire model): time to maturity of the option and strike price
(execution price). On maturity axis linear interpolation is used while
on strike axis we use B-Splines. Genetic operators of mutation and
selection are then applied to parameters of B-Splines.

Resulting parameters allow us to obtain the values of local volatility
both in knot points and intermediate points using interpolation
techniques. Then we solve Dupire equation and calculate model
values of option prices.

To calculate cost function we simulate market values of option prices
using classic Black-Scholes model.

An experimental research to compare simulated market volatility and
volatility obtained by means of calibration of Dupire model has been
conducted. The goal is to estimate the precision of the approach and
its usability in practice.

To estimate the precision of obtained results we use a measure based
on average deviation of modeled local volatility from values used to
simulate market prices of the options.

The research has shown that the approach to calibration using genetic
algorithm of optimization requires some additional manipulations to
achieve convergence. In particular it requires non-uniform
discretization of the space of model parameters as well as usage of de
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Boor interpolation. Value 0.07 turns out to be the most efficient
mutation parameter. Using this parameter leads to quicker
convergence. It has been proved that the algorithm allows precise
calibration of local volatility surface from option prices.

Keywords: genetic algorithm, stochastic optimization, local volatility,
implied volatility, calibration, partial differential equations, Black
Scholes model, Dupire model.
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dopmanizoBaHo 33Ja4y KaJai6pyBaHHS MOJeJi JOKaJIbHOI BOJaTH/Ib-
HocTi /lronipa i3 3acTOCYBaHHAM reHeTUYHOI'0 aJfOPUTMYy ONTHUMi3a-
Lii, K aJIbTEpPHATUBY MiAXOAY «peryaspu3anii» i3 noAaabliuM BUKO-
PUCTaHHAM aJITOPUTMY IPAZIiEHTHOTO CIIYCKY.

[lo6y0BaHO KOMIOHEHTH /JIs1 PO3B’sI3aHHA AUbepeHIiHHOT0 PiBHSIH-
Hs [lomipa, sike Bifo6paxae AUHAMIKy I[iHM Ha 6a30BUH aKTUB B paM-
Kax MogeJi /lronipa. Taka LiHa, OKpiM iHLIOTO, 3a/1€XKUTH BiJi 3HaYeHb
NapaMeTpiB JIOKaJIbHOI BOJIaTU/IbHOCTI, IKy NapaMeTPU30BaHO 3a JIBO-
Ma BuMipamu (3a Mogesutio Jronipa): yacy o ekcnipauii onuiona ta mj-
HOI0 CTpaiK (11iHOX0 BUKOHAHHA). 3a BicC0 Yacy BUKOPUCTAHO JIHIHHY
iHTepno/iALilo, a 3a Bicclo cTpallk - B-cmmaitnu. [lo napametpiB
B-cnialiHiB 3aCTOCOBAaHO reHeTUYHI ONlepaTopH ceJieKlii Ta MyTaLil.
Pe3ysbTylodi napaMeTpu [03BOJISIIOTh OTPUMATH 3HAYEHHS JIOKaJIb-
HOI BOJIATUJIBHOCTI y BY3JIOBUX TOUYKAX, a TAKOX B IPOMI>XKHUX TOUKaxX
uiaxoM iHTepmnosAnii. [licas mporo mJsxXoM po3B’si3Ky pPiBHAHHSA
Jromnipa OTpUMYIOTbCA MOJeJIbHI 3Ha4eHHS LiiH Ha ONLiOHH.

Jnst po3paxyHKy 1inboBoi ¢yHKIil NpoMOJesbOBaHO PUHKOBI 3Ha-
YeHHS LliH Ha ONLiOHM 3 BUKOPUCTAHHSM KJIACUYHOTO BapiaHTy MoO-
Zeni baeka-Illoy.3a.
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[IpoBefieHO eKkcriepUMeHTa/IbHE AOC/TIPKEHHS 3 MOPIBHAHHSA MOJE/bO-
BaHOI pUHKOBOI BOJIATU/IBHOCTI Ta BOJIAaTHUJIbHOCTI, OTPUMAHO] 11Jf-
XOM Kani6pyBaHHA Mozei Jromnipa, 415 ouiHKY edeKTUBHOCTI mijgxo-
[y i aHaJ1i3y MOXJIMBOCTi MO0 BUKOPUCTAHHS Ha NPaKTHUILL.

J1g OLiHKM TOYHOCTI OTPUMAaHHUX pe3yJIbTAaTiB BUKOPUCTAHO Mipy,
o 6a3yeThCcs HA CepeJHbOMY BiJIXUJIEHHI MOJeIbOBaHOI JIOKAJIbHOI
BOJIATWJILHOCTI, OTPUMaHOI LIJIIXOM KaJliOpyBaHHS MOJei, Bifi peasib-
HHX 3Ha4YeHb PUHKOBHX LiiH Ha OMNLIiOHM.

JocnimkeHHs MoKa3aso, o MmiaxiA A0 KanibpyBaHHS 3 BUKOPUCTAHHIM
reHeTUYHOr0 aJIfOPUTMY ONTHUMi3auil BUMarae 3aCTOCyBaHHA JOJAaTKO-
BUX MaHIIy/IAL{H A/ JOCATHEHHS 36DKHOCTI alropuTMy, 30KpeMa BH-
KOPUCTaHHS1 HEPIBHOMIPHOI AUCKpeTH3alil IpoCcTOpy napaMeTpiB MoJe-
Ji, a Takok anroputMmy iHTepnossAauii /Jle Bypa. BusiBsieHo HalGinbia
ebeKTHBHe 3HAUYEHHs MapaMeTpy MyTauil AJs AaHoi 3a4adi, sike 1opiB-
Hioe 0,07. 3a 1boro 3HaueHHs 361KHICTb JITOPUTMY AOCATAEThCS HaM-
mBUALIe. JloBeJieHo, 1110 aJITOPUTM 3/aTeH JOCUTb TOYHO KalibpyBaTu
[TOBEPXHIO JIOKAJIbHOI BOJIATUJIBHOCTI 3 PUHKOBHX L{iH Ha OILIIOHU.

Knw4o0Bi cioBa: ceHemuyuHuUll aq20pumm, cmoxacmu4Ha onmumisa-
yisl, 10KAbHA 80/1AMU/AbHICMY, IMNAIYUMHA 80/41AMUAbLHICMb, KA1i6-
pPYBaHHsl, PIBHSHHSI 8 YACMUHHUX NnoxiOHuX, modesav Baexa-llloyasa,
Modesas [wonipa.

KAJINBPOBKA MO/IEJIU JIOKAJIbHOHM BOJIATUJILHOCTHU
JIOITUPA C UCITOJIb30BAHHUEM 'rEHETUYECKOTI'O AJITOPUTMA
OIITUMU3ALIUH
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[TocTpoeHbl KOMIIOHEHTHI AJ1s1 pelieHUs fJUddepeHIIAaTIBHOTO ypaB-
HeHus /llonupa, KOTOpoe OTpaXkaeT AMHAMMKY LieHbl Ha 6a30BbIH
aKTUB B paMKax Mojesu [lronupa. Takas LieHa, KpoMe Ipoyero, 3aBu-
CUT OT 3HaUYeHUH NapaMeTpOB JIOKaJbHON BOJIaTUIBbHOCTH, TapaMeT-
pU3UPOBAHHOH N0 JByM HM3MepeHHUsAM (110 MoAenu /lronupa): BpeMe-
HU /10 3KCIIMPalMM ONLMOHA U IIeHOH cTpalK (LeHOW HCIIOJHEHHs).
[lo ocy BpeMeHHU MCNOJIb30BaHA JIMHENHasA HHTEPIOJIALMS, a 110 OCH
cTpaiik - B-cnsaiinel. K mapaMeTpaM B-cniallHOB pUMeHEHBI reHe-
THUYeCKHe OIlepaToOpPbl MyTaLUH U CeJIEKIUH.

PesynbTHpylolMe napaMeTpbl MO3BOJAIOT MOJYYUTh 3HAYeHUe JIO-
KaJbHOHM BOJIATUJIBHOCTH KaK B y3JIOBBIX, TaK U B NPOMEXYTOYHBIX
TOYKaX MyTeM HHTepnoasauuu. [locse 3Toro peuaetcsl ypaBHeHHe
Jlonrpa ¥ pacCYUTHIBAIOTCS MO/ie/IbHble 3HaUeHUs IeH Ha OINLHOHBI.
J1s1 pacyeTa 1esieBoi GYHKIHMHM MOJENIMPYEM PbIHOYHbIE 3HAYEHUs
L[eH Ha ONLMOHBI C HUCI0Jb30BaHUEM KJIACCUYECKOI0 BapUaHTa MoJie-
su bieka-Illoyaza.

[IpoBesieHO 3KCIIepUMEHTANIBHOE HCC/IelOBAaHUE 110 CPABHEHUIO CMOJie-
JINPOBAHHOM PBIHOYHON BOJATUJIBHOCTH W BOJIATUJIBHOCTH, MOJIy4YeH-
HOU MyTeM KaJMOPOBKHU MoJesu Jronupa, AJis oleHKH 30 PeKTUBHOCTH
MOAX0/a U aHaIM3a BO3MOXKHOCTH €r0 NPYMeHeHHs Ha IPaKTHKe.

[l OLleHKH TOYHOCTH NMOJY4eHHBIX Pe3y/IbTaTOB MCI0JIb30BaHA Me-
pa, KoTopast 6a3upyeTcs Ha CpeJjHEM OTKJIOHEHUH MOJIeJIMPOBaHHOMN
JIOKAJIbHOM BOJIATHUJIBHOCTH, TOJIYY€HHOU MyTeM KaJUOpPOBKH MOJie-
JIY, OT peaibHbIX 3HaUeHUH PbIHOYHBIX LleH Ha OMLUOHBI.
HccnenoBaHue mokasaso, 4YTO MOAX0J, K KaJHOGPOBKe C MCIOJIb30Ba-
HUEM TeHeTHYeCKOro aJIFOpUTMa ONTHMHU3aLUH TpebyeT ImpHMeHe-
HUSA JONOJHUTEIbHBIX MaHUIYJASALUN A8 JOCTHKEHUSI CXOJUMOCTH
aJropyuTMa, a IMEHHO — HepaBHOMepHOH AUCKpeTU3alui NpOCTpaH-
CTBa MapaMeTpoB MOJieJiy, a Takke uHTepnoJssauuu e Bypa. Onpege-
JIEHO, YTO Haubosiee 3¢ deKTUBHOE 3HAYeHHe MapaMeTpa MyTaLUU
ANl JaHHOM 3ajauu paBHseTcsa 0,07, mpu KOTOPOM CXOAMMOCTH
aJIrTOPUTMa JOCTUrAeTCs MAaKCUMaJIbHO GbICTPO. JloKa3aHo, YTO aJiro-
PUTM CcHOCOGEH JJOBOJIBHO TOYHO KaJMGpPOBATh MOBEPXHOCTD JIOKA/Ib-
HOU BOJIaTUJIBHOCTH U3 PbIHOYHBIX LjeH Ha ONIHOHBI.

KimodyeBble c0Ba: zeHemuyeckull asnzopumm, cmoxacmuyeckas on-
mumu3ayusi, A0KAAbHASL 80AAMUALHOCMb, UMNAUYUMHASL 804AMU/Mb-
HOCMb, KAAUOPOBKA, YPABHEHUS 8 YACMHbIX NPOU3BOOHbIX, MOdeab
Bbaeka-1loyasa, modeas [onupa.

JEL Classification: C15, Cé61, G12

1. Introduction
1.1. Motivation
Since the famous Black-Scholes model was introduced in 1973,

option markets have evolved to become autonomous, organized
markets with a fairly high degree of liquidity, especially for index
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options and foreign exchange options. In such markets, the market
prices of a series of liquid options, which are often call or put options,
are readily observed. These market prices are then used as a
benchmark to «mark to market» or calibrate an option pricing model,
which can then be used to compute prices of more complex («exotic»)
options or compute hedge ratios [1].

Determining of underlying asset’s volatility from the set of
observed market prices is called «model calibration» problem. It is the
inverse problem to the option pricing problem.

Since the financial crush of 1987 the practitioners have noticed
that the constant parameter of volatility calibrated as implied volatility
from standard Black-Scholes model is not relevant anymore. In reality
the volatility varied among different strikes and maturity dates for
benchmark options. It has led to development of generalized models,
including local and stochastic volatility models.

In the case of parametric approach the volatility parameter is
defined as finite dimensional vector (for Local Volatility, Stochastic
volatility or CEV model). Calibration problem lays in finding such
value of parameters that the set of prices obtained from the model
matches the set of observed market prices.

However, in practice the market information is not sufficient to
completely identify a pricing model. If the model is sufficiently rich,
several sets of model parameters can be compatible with market
prices, leading to model ill-posedness and uncertainty [1].

In practice calibration problem is introduced as optimization
problem: the goal is to match the market prices as close as possible.
The common measure of discrepancy between model prices and
observed market prices is a sum of squared differences between them.
The weighted cost function is defined as following:

i

G(o)= ZI“‘Callm"del(t,St,Zj,Ki)— Calltma‘ke‘(T},Kirw. : (1)
i=1

where S — spot price of the underlying asset; K — strike price of the
option; 7 — maturity of the option; w — weight of the given option in cost
function; 7 — time at which we price the option (normally today’s date).
To minimize this cost function the classical gradient methods
could be used. However the cost function is neither convex nor does it

7
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have any particular structure enabling the use of gradient-based
minimization methods to locate the minima [1]. Moreover, the
function is not given explicitly and solutions are obtained by solving a
partial differential equation or executing a Monte-Carlo simulation.
Finally we are not even sure that the gradient-based algorithm will not
fall in a local minima instead of a global one.

There are several approaches to regularize the ill-posed problem as
well as introduce some convexity penalization criteria to ensure the
ability of gradient-based algorithm to find a well-matching set of
parameters. The motivation of this work is to implement alternative
approach introduced by Ben-Hamida and Cont that does not suppress
the ill-posed character of the problem but rather reflects it. The
genetic optimization algorithm is used to overcome the problems of
non-convexity and multiplicity of local minima.

1.2. Literature review

Current research is inspired by the results of Ben-Hamida and
Rama Cont paper [1]. The authors introduce a probabilistic approach
for calibration of local volatility surface from the set of observed
market prices. Calibration involves usage of genetic algorithm: its
steps are applied to local volatility surface presented as cubic B-Spline
on strike axis and linear interpolation on maturity axis. The
parameters of B-Spline are exposed to cycles of genetic
transformations that lead to obtaining the fittest surface.

Ben-Hamida and Cont in their article claim that Dupire formula for
obtaining local volatility from the market prices is unstable: Dupire [2]
presents a formula for reconstructing local volatility functions from a
continuum of call option prices; however, this formula involves taking
derivatives from discrete data and is numerically unstable. A discretized
version of the Dupire formula is the implied tree method of Derman et
al (1996), which is prone to similar instabilities leading to «negative
probabilities» [1]. That is why Ben-Hamida and Cont describe an
alternative way to calibrate the local volatility directly.

Raphael Cerf [3] and Del Morel [4] introduce the main steps of
particle genetic algorithm and prove its convergence. Cerf proposes to
decrease the temperature parameter while moving through algorithm’s
iterations. He suggests that this (progressive increase of selection
pressure) will lead the population to concentrate around the global
minima. Alternative implementation of natural (binary) genetic

8
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algorithm is described by Frank Dieterle [5] and Noraini Mohd
Razali, John Geraghty [6]. Both authors focus on the importance of
selection procedure in binary approach. For this research we have
nevertheless chosen the particle algorithm as it requires less
computational cost in general case.

J.Frederic Bonnans, Jean-Marc Cognet and Sophie Volle [7] use
the Newton-Raphson algorithm for calibration of local volatility and
regularize the problem by using the same regularization term as
Lagnado and Osher [8]. As an alternative they introduce another way
to regularize the problem — multiscale approach. Howison [9] claims
that the regularization method provided by Lagnado and Osher [8] has
some drawbacks among which is computational cost. Ben-Hamida
and Cont, however, reject usage of regularization as it is not necessary
for direct calibration of local volatility. In this research we do not add
any regularization terms to the cost function.

Bonnans, Cognet and Volle also introduce a usage of implicit schema
to solve the PDE of Dupire that permits us to obtain model prices. In [7]
the authors prove that usage of implicit schema with uniform
discretization schema will give incoherent results for the near-the-strike
prices and non-uniform discretization will permit us to obtain more
precise prices near-the-strike. We will use the same non-uniform schema
in our research. Howison [9] as well as Ben-Hamida and Cont uses
weighted minimization (weight of near-the-strike prices in computation
of cost function is bigger than the weight of less tradable options). The
results of this research are obtained by using weighted approach as well.

Li and Coleman [10] introduce the cubic spline approximation of
local volatility function. In our research however we still use its
representation in B-Splines proposed by Ben-Hamida and Cont [1] as
it is well adjusted to the regularization approach that they use. In
future work we suggest usage of De Boor’s algorithm of spline
interpolation as it reflects better the optimization problem and
possibly can improve the convergence.

1.3. Research objectives

The objective of current research is to introduce the state of the art
in local volatility calibration problem and implement the algorithm to
solve this problem. We aim to obtain coherent results of calibration
avoiding at the same time high dimensionality of the problem and
reducing the computational costs by applying interpolation techniques.

9
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We are also willing to enhance the existing approach by improving
algorithm’s components. Introducing and calculating a measure of
quality (Section 2.3) of the calibration is a novelty of current work.

Firstly we aim to produce a general view on local volatility
calibration and introduce a formal representation of the problem
including the cost function. We will also do a brief overview of
particle genetic algorithm.

Then we introduce Dupire framework and challenges that raise up
within it. The goal is to provide methodological guide to implement next
brick of the algorithm: Dupire differential equation solver that is used to
calculate the cost function on every iteration of genetic algorithm.

Finally we introduce the requirements for the input of optimization
problem — local volatility surface. We also provide a guideline to
create a smooth representation of the local volatility surface using B-
Spline interpolation with uniform knots.

In the last section we provide numerical results obtained by
running the genetic algorithm to calibrate local volatility surface. We
estimate a quality of the approach using an average-based measure.

The global goal of this research is to prepare the basis for the
following improvements in the analysis of predictive power of
volatility. Obviously the set of obtained model parameters can be used
to study the predictive ability of local volatility by regressing local
volatility parameter as dependent variable on a time variable. This
will be the next step to introduce a neural network constructed from a
set of regression models correspondent to different volatility models
(local, stochastic, implied volatility etc.). Such a network can
potentially improve banks’ forecasts for realized market volatility and
thus improve the pricing accuracy. It can be also used for overnight
risk reports and pricing valuation adjustments that require pricing of
options at future times.

2. Theoretical basics

2.1. Calibration problem setting

The optimization problem where the input is a parameterized local
volatility surface is:

discTdiscK 2
inf G(0).G(0)= Y. > |c*(t.5,.7. K, )-C (1. K, | w, )

J
O<E =1 j=l

10
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where C* — a market observed price of a Call; C? — a theoretical price
obtained for a set of market parameters and a local volatility surface
corresponding to a set of parameters ; w;; — the weights determined
by the fact how for the option is in- or out-of-money; discT, discK —
number of values (discretization) of time and strike axis respectively.
As the function G(*) is neither convex nor continuous, the gradient
based approaches will not work in the regularization of the problem.
The function G() is not given explicitly as well. The solution for
C’ is obtained by solving the Dupire PDE (Section 3.2) for the
corresponding set 6. To regularize the input (smooth volatility
surface), we use B-Spline representation in Section 4.1.
Until the stopping criteria is achieved we improve the set of values
by adjusting the parameter set 6 using the genetic algorithm
(Section 2.2) as one that does not requires any gradient calculations
and reduces the dimension of the problem. Adjusting of parameter 6
allows us to obtain a new (improved) smooth representation of a
function (K, 7) that is now a local volatility function.

2.2. Particle Genetic Algorithm

Genetic algorithms are stochastic search methods based on natural
evolution processes. They are defined as a system of particles (or
individuals) evolving randomly and undergoing adaptation in a time
non necessarily homogeneous environment represented by a
collection of fitness functions [4].

The simplest genetic algorithm is a two-stages and time in-
homogeneous Markov chain given for each n >= 0 by setting

G=CGrd) b =G &) —— G

Here we have:

« Integer N represents the size of population;

o The initial system &, = (&} ...¢&)) consists of N independent
random particles;

« Gibbs measure is introduced as G(&}) = exp(—V(&L)/T) , where
V(L) is a cost function and T is a temperature parameter;

« In the selection transition the particles &, = (f}, L EN ) are chosen
randomly and independently of previous configuration according to a
given measure (Gibbs) G(&,) with probability of selection of the i-th

11
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individual equals P(&i =¢&i|¢,) =G(&:) and probability of its
replacement by another individual equals P(&} = £5|¢,) = ZNL?()F');

i=1 0

o Mutation Kernel can vary however we use the simplest
representation &, = &, +t(2 *rand() — 1);

« t is a step (small value) and 7 is decreasing wth increasing
number of iterations;

« we run algorithm until at least one member of a population &,
will satisfy stopping criteria (cost function will be minimized) i.e. sum
of square differences will be sufficiently small.

Genetic algorithm is used in practice for several reasons:

« It does not requires differentiability of the cost function;

« Alternatively to Newton-Raphson algorithm falls to the global
minima when the function is not strictly convex;

« Converges relatively fast.

The local volatility calibration problem falls into these categories.

2.3. Solution quality criterion

We consider the calibration successful if the average value of
volatilities calibrated for at-the-money options (i.e. such that the strike
equals to the spot price of the underlying) at every maturity lays in
30 % threshold with respect to the value ¢ = 0.2 (we use ¢ = 0.2 for
simulating market price of the option at every point (i,j) and for the
sake of simplicity it is taken constant). In the case of absolute
convergence o(-,at) = 0.2, where at is an index of at-the-money
option. The simple average:

discT

z:oiiscT”(i'at)_O_z
deviation(at) = di“OT—Z. (3)
And the quality measure:
Q. (deviation) = I(deviation < 0.3) 4)

where /(-) — an indicator function returning 1 if the argument is true
(deviation is small enough and quality is sufficient for given strike) or
0 if argument is false (quality is insufficient).

However previous argument can be too weak to represent overall
quality of the algorithm as we are interested not specifically in local

12
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volatility calibrated from at-the-money options (one strike) but rather
in volatilities from the set of close-to-the-money options. So we
introduce new measure

10
X _ . discK Ql(deviution(k))
=at-—5—

TR : ()

10

Q:

2

Of course dils—;K is used only when discK = 50 in pair with at = 25 as

it represents 10 prices close-to-the-money. If we change discretization
this value is to be changed (however in this paper we take into account
10 values). Average-based measure Q is basically used with an old
measure as an argument. We aim to obtain the output close to 1. O = 1
corresponds to absolute quality, while Q = 0 corresponds to bad quality.
We evaluate this measure in numerical results.

3. Local volatility theoretical basics

3.1. Implied and local volatilities

In the standard Black-Scholes model the volatility parameter is
supposed to be constant with respect to maturity and strike. However
on the real market we observe that the volatility varies depending on
both of the variables.

Generalized Black-Scholes framework permits us to solve the
inverse problem for every maturity 7 and obtain the implied volatility
values, however it still supposes that volatility is flat with respect to
strike axis (i.e. for any maturity volatility is the same for any strike
option), while we can observe the «smiley in the real market.

Bruno Dupire [2] in his research introduces the local volatility as a
function of time and stock price S; which can be rewritten in terms of
maturity and strike:

o(T,K) = [L—Z2K (6)

Dupire formula for local volatility can be rewritten in terms of
implied volatilities as well:

13
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s24257(E g4

o(T,K) = — (dT d;;) e )
s (o () )25
or implementing y = K/F(¢,T):

$2 4 zﬁr%

o(T,y)= - — — (8)
1+2d1y@+y2T dd, @ +id§
dy dy dy

Being armed with Dupire formula one can proceed to calibration
of local volatility surface having it. Among practitioners it is preferred
to use the Dupire formula as presented in (6) — (8) and (11).

In this case the standard procedure to calculate the local volatility
surface from the implied volatility one is next:

1. Main requirements for the implied volatility surface are: C'
continuity w.r.t. time axis, C* continuity w.r.t. strike axis. Thus to get a
sufficiently smooth surface, we have to use linear interpolation on time
axis and spline/2-nd or 3-rd order polynomial interpolation on strike axis;

2. Calibrate the implied volatility independently for each pair
(T,K) using a Black-Scholes formula and gradient-based optimization
algorithm;

3. Obtain the values of implied volatility at intermediate points
(t,k) employing an interpolation method to the points obtained in the
previous step;

4. Use Dupire formula to obtain the local volatility from now
differentiable (smooth) implied volatility surface.

However, Ben-Hamida and Cont claim the instability of Dupire’s
formula based methods [1]: Dupire presents a formula for
reconstructing local volatility functions from a continuum of call
option prices; however, this formula involves taking derivatives from
discrete data and is numerically unstable. A discretized version of the
Dupire formula is the implied tree method of Derman et al [1], which
is prone to similar instabilities leading to «negative probabilities».

Alternatively we will discover their approach that avoids
calculation of implied volatility and calibrate the local volatility
surface directly using the genetic algorithm. The advantages of direct
calibration of local volatility surface [1]:

14



Kani6pyBaHHs MogeJ1i IOKaBHOI... M. B. BoHdapenko, B. M. FondapeHko

« No interpolation of option prices or implied volatilities is
required. Contrary to implied tree (Derman et al) methods or methods
based on the Dupire formula, it does not require call-put prices for all
strikes or maturities nor any ad hoc interpolation of observed prices.
They can therefore be applied to index options where the number of
observations is large and also to equity options for which less amount
of data is present;

« Avoidance of computing the high-dimensional gradient of the
objective function;

« Do not require convexity of the objective function;

« Provides a population of solutions: it means that this approach
rather reflects the ill-posedness of the problem and its uncertainty than
eliminates it.

So instead of using the standard approach i.e. calibrate and
interpolate the implied volatilities, we will work on direct calibration
of local volatility surface by solving the Dupire PDE for each pair
(T,K) being given the input parameter o(7,K). The surface o(7,K) will
nevertheless be introduced as a combination of B-Splines and the
genetic algorithm will be applied not directly to o(K,7) but to
parameters of the spline representing it. The usage of it will become
evident in Section 3.3, where we introduce the Dupire pricer.

3.2. Dupire theory
We consider the Black-Scholes model of asset price evolution

where the volatility of the underlying is supposed to be constant. As
volatility is the only non-observable parameter in this model, we can
determine it for a quoted option (7,K). The volatility obtained in this
way is called Implied volatility.

However we can see that the volatility is pretty much dependent on
strike and maturity of an option and is not constant at all (phenomena
of «volatility smile»). That is why we look for another representation
of local volatility. Many articles propose next diffusion process:

Dupire proposed a PDE that governs the price of the whole grid of
the options. Local volatility a(S,?) is a coefficient of this PDE.

15
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Dupire eguation is formulated using the equation of Fokker-
Planck. We consider case with no dividends. The Dupire equation:

av av 1 dazv
E(K,T):—TKE(K,T)+50'2(K,T)K2m(K,T) (11)

with a set of conditions:

V(K,t,) = max(S, — K, 0)
limk_>0V(K, T) = SO
limy_so,V(K,T) = 0

In Section 3.3 we present the numerical solution of Dupire
equation.

3.3. Implicit schema solution

In the Section 3.1 we have described two ways to obtain the local
volatility: the standard approach that uses Dupire formulato pass from
implied volatilities to local volatilities and the direct calibration of
local volatilities (implies solving the Dupire equation for every pair
(T,K) of interest). As the first approach has some numerical
instabilities we will use the direct calibration.

To obtain a solution of Dupire PDE for an input (K, T) we have to
pass through several steps:

1. Logarithmic change of variable (transform the PDE and the set
of conditions);

2. Introduce new space discretization — we will use non-uniform
discretization;

3. Introduce time discretization — we use theta-schema with 6 = 0
that is equivalent to implicit discretization schema;

4. Write the PDE in terms of new operators and obtain the
tridiagonal system of equations;

5. Obtain the resulting matrix of option prices by solving the
tridiagonal system with Thomas agorithm.

The logarithmic change of variable [7]: We do change of
variable y = In(K) and U(y,T) = V(K,T). New system to solve:

du
—+AU,T) =0

aT
U(ymin' T) = So
U(ymaX: T) =0

U(y, ty) = max(S, — e”,0)
16
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Grid discretization where

A(T) = ayru;—1 (T) + Birwi(T) + virui1 (T). (12)
With Uniform discretization case [7]:

) 1 o*(y,T)
ar =~ R\t
a?(y;,T)
pir = 22T
_of) 1 r+02(yi'T)
Vir ="onz T 2n 2
Non-Uniform discretization case [7]:
D1 (r 4 a*(yi, T)>
(hi + hi—Dhiy 2k 2

o?(y,T) (1 1 1 a2y, T\ 1 1
Bor = (i )(_+ >+_ r+£ ( __)
TR+ hi g \Ry  hiy) 2 2 hioy hy

o oD 1 f0uT)
Yol = " h, + h_Dhy © 2h; 2

where the ingredients are:
we define the function

a;r =

1
g(y) = Eln((ymax + )’)/(ymax - y)) + Yo
and let

2
h= % — 5In(K)

Yi = Ymin + [ * 6In(K) (uniform case) or

¥i = 9(=Ymax + ih) = g(In(K;)) (non-uniform case)
we define ;= y1 — yi.

Time discretization (theta-schema)

u —Uu ~ ~
% +0(AMu") + (1 — 0)A™ 'y, = 0

Uy = max(S, — e”,0)

17
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System to solve (implicit schema when 6 = ()

H ! = pn
b= (I — kA" )" — Sok(fag p, + (1 =8y, ,e1)

H" =T+ (1—8)kA"*!

where

« [ is a unary matrix (all values are equal to 1);

« kis a 07 discretization step on time axis;

« ¢ is a vector with first value equal to 1 and all others equal to 0
(to reserve the initial condition’s role).

The tridiagonal system representation

e om0 0 0
aar  Bar Yo 0 0
. 0 agp  Gag BEN 0
Ay =
1] 0 O 1T Oue LT Yon—1LT
0 0 0 7 BT

And H™u™*1 = p™ is presented as

Sk +1 .1 0 0 0
ACRS Gark+1 Yo 0 et 0 H;]|+|
1] as.r Bark + 1 ~aT 0 . rr; b1
0 0 S S I S S P !
0 0 0 ant Sk + 1
vhl
bo
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Solve the tridiagonal system of equations (Generalized Thomas
algorithm)

Apply Thomas algorithm of diagonalization to solve the system for
each time step n.

Let us put into the system the values of o(K, T) that we have used to
simulate market prices. Finally we obtain the surface of Dupire prices
of the call (Figure 1). The discrepancy between the prices obtained
and the market prices is illustrated in the Figure 2.

Usage of non-uniform schema allows us to obtain better prices
around the strike (5-10 % difference with real prices) when solving
PDE. On Figure 2 we can see that the prices farther from the strike
(out-of-money) are less precise and even non-coherent.

The values of o(K;,7T) used are equivalent to values o(yi; 7).
Therefore we are interested to interpolate these values at each point i
to put into Dupire PDE

200 0O T

Figure 1. Dupire price surface

19



HENPO-HEUITKI TEXHOJIOTIi MOJEJIIOBAHHS B EKOHOMILII 2018,Ne 7

*

(u (K, T)-market)/market

100 120

Figure 2. Discrepancy surface solver

4. Representation of a local volatility surface
4.1. B-splines representation of local volatility surface

We reconstruct the volatility surface by means of B-Splines to
achieve two goals:

e Smooth representation of volatility surface (C* continuity);

e Decrease the scale of the problem (minimize the number of
inputs to optimization algorithm).

Let us define the local volatility function as a smooth polynomial
defined completely by basis functions associated with n points
(«knots») and n — 4 corresponding «control points» (values at certain
knots). Number of control points is always equals: m=n—p—1
where p is a degree of the interpolating polynomial. This means that 2
knots at each bound do not have a corresponding control point.

For our case we define K-grid representation:

« Control points is a set of 8§ — parameters of volatility curve to be
found;

« Basis functions are defined for p = 3 case at each of the knot
intervals. Number of knots # is smaller than the discretization of the
grid (to achieve the smaller scale of the optimization problem);

20
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Kani6pyBaHHs MogeJ1i IOKaBHOI...
« In Ben-Hamida and Cont [1] representation knot intervals are

equal
0(Ti) = =10, M) P ().

We obtain the values on T-grid by means of linear interpolation:
t—T;
0 (Tiy1, ). (13)

Tiy1—t
o(t,x) =——0c(T;,x) +
(&%) Ti41—T; (Ti, ) Ti+1-Ti
To obtain the spline of 3-rd order we can use the basis functions

introduced in Ben-Hamida and Cont [1] or apply the generic De
Boor’s algorithm to find Basis functions on uniform knots, which are

presented in the Figure 3.

0.7

0.6
|

0.5
|

01 /

knots

Figure 3. Basis functions on uniform knots

Let us reconstruct a pseudo-volatility function for next parameters:
10] is a knot vector containing 11 uniformly

e X =10:1":
distanced values;
e x =rand(1,11) random control points corresponding to the knots;
« p =3 degree of polynomial.
We want to evaluate the B-Spline in the points £ =1 : 0.001 : 10
and present it in Figure 4.
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\o ()

sigma(T,x
]

oar f o

=]
| ]
I
=
I
|

0 1 2 3 4 5 5 T 8 9 10
knots

Figure 4. Spline evaluated at intermediate points

4.2. Ill-posedness and smoothness requirements
(optional improvement)

The main difficulty with solving the inverse problem (calibration
problem) arises when we are looking for an input to the Dupire pricer
introduced in the Section 2.2. Basically we could start from any
random points o(K, T) corresponding to the points known from market
data. However this naive approach has several drawbacks:

« The dimension of the problem will be equal to N*M where N, M
are sizes of discretization grid w.r.t. time and strike respectively. It
will require an enormous computational cost (too much inputs into
genetic algorithm);

« The ill-posedness of the problem causes the existence of infinite
number of solutions and the naive representation will lead us to
instability of the solution obtained.

Ill-posedness of the problem can be defined as non-continuity of
the dependence of local volatility function on market data. It means
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that small perturbations in the price data will result in large changes in
minimizing function and any solution obtained will be unstable
(especially for the volatility calibrated for short maturities). Ill-
posedness implies the non-uniqueness of solution as well.

To put some restriction on the solutions accepted Ben-Hamida and
Cont introduce the smoothness requirement. Authors [1] propose to
use smoothness semi-norm to quantify the smoothness of the local
volatility surface:

+

a’20'2

T
ol =3[

do|
dT
or in matrix form:

loll* = 646", (15)

where 0 is a matrix of control points in B-Spline representation.

Despite we will not use the smoothness requirement in our solution
we will introduce the approach used by Ben-Hamida and Cont to
construct the multivariate Gaussian random vector from the set of
standard Gaussian random variables. It can be potentially used to
create a set of Gaussian vectors applied in affine transformation of
random mutation to improve the convergence and assure some
acceptable only solutions.

Density of multivariate Gaussian by definition:

1 T 4 (g
f(x):Le—E(x-ﬂ) A7 #)7 (16)
|27

where det(A) # 0 (A — is a covariance matrix and it has to be
invertible).

Here (x—u)’47'(x—u) is a quadratic form equivalent to (15) in our
case.

By the affine property any affine transformation of a Gaussian is
a Gaussian i.e.

X ~ N(u,A)= BX+b ~ N(Bu + b, BAB") (17)
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where X is a Gaussian vector.

Hence the random vector is constructed as following: let set of
independent X; ... X, ~ N(0,1) = X ~ N(0,/) where / is identity matrix.
Then:

BX + it ~ N(u,4) (18)

where 4 = BB'.

The Gaussian B then can be used in mutation kernel that is
equivalent to the affine transformation (18) with u = 0.

Matrix B has to be found by applying Cholesky factorization to
positive semi-definite matrix A.

4.3. Algorithm description

In the Figure 5 we describe the workflow of our program. Firstly
we generate the initial population of control points 6, (as volatility
surface is parametrized with control points of B-splines on strike axis
and linear interpolation on time axis) for i € 0../ and m € 0..M, where
M — number of control points on strike axis and / — number of linear
interpolation points on time axis.

Then for each member of population B-spline is built with help of
such control points and o(t,x), is obtained for all # € 0..7 and x € 0..K,
where T,K — discretization numbers by time and strike respectively,
p — index of population member.

Then ¢ is inserted do Dupire equation solver and solution (prices)
C (tx),1s obtained for each #x on discretization grid for each p.

Prices are compared to real market prices for each 7.x and for each
p and the sum of squared differences is considered to measure the
fitness of each p-th candidate. If the desired fitness is not found we
pass to next step otherwise program terminates.

Candidate matrices of control points 8%, (p) then are subject to
genetic transformations (selection and mutation) based on the fitness
of corresponding solutions for each p. New population is formed and
algorithm repeats.

Remark: The market data is simulated from Black-Scholes formula
to achieve better flexibility in testing calibration for different values of
parameter o.
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Matrix of control points 1 Matrix of parameter sigma 1; CP1
(CP1)

Initial population
builder (can be Matrix of control points 2
built randomly or (CP2) Spline builder

from prior)

Matrix of parameter sigma 2; CP2

Matrix of control points 3
(CP3)

!

genetic algorithm
(Selection + Mutation)

Matrix of parameter sigma 3; CP3

\—\

Pricer

Fitness (Solution 1); CP1 Prices1 (sigma1l); CP1

Squared
difference
calculator

(fitness)

Fitness (Solution 2); CP2 Prices2 (sigma2). CP2

Obtained desired fitness

Fitness (Solution 3); CP3 Prices3 (sigma3), CP3

End of program

Figure 5. Program workflows

4.4. Algorithm setting

Model settings:

« Ke[0.005; 0.005 + 8k ..200], where 8k =
Te[0; 0 + 6t ..5], where 6t = %;
discK = 50 (strike axis discretization);
discT = 20 (time axis discretization);
» §=100 (spot price);
o =0 (rate).
Genetic algorithm settings:
To= 1000 (initial temperature);

« t=0.03,0.05,0.07 (mutation rate varying for experiments);

o N, =2" (maximum number of simulations);

o M = 64 (temperature decreasing frequency);

« p =20 (population size);

« Stopping criteria: G(0) < 15.

Miscellaneous:

« Market data C;*(T},K)) is simulated from: ¢ = 0.2 for all K, T using
Black-Scholes model;

(200-0.005) _
disck ’
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e Quality criteria: we use measure Q (Section 2.3) to qualify
obtained results.

4.5, Fitness function

The weighted sum of squared differences was chosen as cost
(fitness) function to minimize. The sum is taken over all
strike/maturity pairs indexed i € [l..DiscT|, j€[l..DiscK]
respectively and weighted on weight function

_ 1 x\?
Wij = (0.1*@) * exp (_0'5 (ﬁ) )’ (19)
where
_ (j—DiscK/2)
x = DiscKk (20)

If we refer to function (2) the weight w;; is obtained as

weight(i,j)
Wi = ———a gl 21
b yPK weight(i,j)) D

Then we get to the following form of the cost function:

2

inf G(0).G(0)=>">|c°(¢.S,.7.K, )-C/ (1..K, ) Dﬁighf(i’j). ~ (22)
beE e ij:l weight(i, j)

This cost function allows to assign a superior weight to solutions
that are of our interest (close-to-strike).

1
=1

i

5. Numerical results

5.1. Numerical results:
uniform knots interpolation case

The result of the calibration is a local volatility surface introduced on
Figure 6 and Figure 7 (same figure / different view). Market prices
simulated with ¢ = 0.2 for all KT are represented by the purple plane
surface. Calibrated local volatility surface oscillates around it. From the
Figure 7 we can conclude that oscillation is less sharp around K =S5= 100
while for far-from-the-money options it becomes even negative.
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a(K.T)

o 20 40 G0 B8O 100 120 140 160 180 200

Figure 7. Local volatility surface: view K, o

The surface represents the local volatility matrix (K, 7). We studied
the frequency of appearance of ¢ in different intervals. On Figure 8 we
describe distribution of o(K,7) from the whole matrix (i.e. for all K, 7).
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The histogram is obtained using mutation rate m = 0.07. We can see that
most of the values lay in the interval [0; 0.1] and [0.3; 0.5].

Number of occurances

o(K.T)
Figure 8. Local volatility surface: Histogram over all values
Then the analysis is narrowed to the values of o(K, 7) for all K;, where
index j € [20; 30], while at-the-money value is represented by index j = 25.

Looking at only close-to-the-money options we notice that most of the
values of o lay in the interval [0.1; 0.4], as we can see at Figure 9.

50

8 & & &
T T T

Number of occurances

0.4 02 0 02 04 06 08 1 12
o(K.T)
Figure 9. Local volatility surface: Histogram over index of K € [20; 30]
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Quality criteria for these results is presented on Figure 10.

Experiment set Experiment # Mutation rate Number of Quality measure
iterations (Q)[0,1]

1 1 0.05 677 0.545455!
1 2 0.05 63

0.545455]
1 3 0.05 309

0.545455
2 1 0.03 512 0.363636
2 2 0.03 792 0.545455
2 3 0.03 211 0.454545
3 1 0.07 538 0.6363641
3 2 0.07 89

0.545455]
3 3 0.07 281

0.545455]

Figure 10. Results of the calibration

Three experiment sets are introduced: each set is executed with
different mutation rate parameter and contains three similar
experiments. In terms on number of iterations and estimated quality
measure the mutation rate m = 0.07 turns out to be the best to
reconstruct the local volatility surface.

6. Conclusions

In current paper we have introduced the state of the art in local
volatility calibration. It is based on results of Ben-Hamida, Cont,
Dupire, Del Morel, Cerf, articles and other research contributions. The
genetic algorithm can be used as an alternative to gradient descent
algorithm with smoothness requirement (problem regularization).
Genetic approach allows to reflect the multiplicity of solutions (as we
cope with an ill-posed problem) rather than get rid of it by
regularization.

B-splines and linear interpolation are used to represent local
volatility surface on strike and maturity axis respectively.
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The input of genetic algorithm is a set of parameters of B-splines.
Instead of optimizing directly the values of o(K,7) we use these
parameters that also allows us to reduce the dimensionality of the
problem. These parameters 6 are then passed to Dupire PDE pricer
that returns matrix of option values for all K, T (strikes and maturities).
This matrix is used to evaluate the cost function by comparing these
prices to simulated market prices. The set of B-spline parameters
corresponding to accepted solution allows us to reproduce local
volatility surface at desired points by interpolation.

We have implemented the algorithm and obtained coherent results.
Our algorithm is able to reconstruct efficiently the local volatility
surface starting from random values of control points in B-spline
representation of local volatility so basically we are not obliged to use
a prior (suggested by Ben-Hamida and Cont) to have the algorithm
converged (but it can improve the convergence).

The value m = 0.07 turns out to be the most efficient mutation rate
(Figure 10). It reduces at most the number of iterations while
increasing algorithm’s quality.

The quality measure estimating the percentage of solutions laying
in 30 % threshold from realized values is between 36 % and 63 %
(Figure 10). We also calculated that for 60 % threshold this
percentage reaches 90 %. The quality measure however takes into
account only close-to-strike options (Figure 9). If we take the whole
grid we can see from (Figure 8) that much less results lay in this
interval. However, in practice we are not interested in this purely
theoretical conclusion as volatility value does not affect at all the
prices of far-from-strike options.

It means that the algorithm is capable of reconstructing coherent
volatility surface that can be used in future research. At the same time
it reflects the multiplicity of solutions many of which satisfy quality
criteria. However, to improve the quality we have to bring some
additional modifications.

7. Propositions

In further work we propose to extend the research of Ben-Hamida
and Cont by using of De Boor algorithm of interpolation of
parameters grid to obtain better convergence. The reason to try De
Boor approach is that it allows us to apply genetic operators to control
points that are not uniform on strike axis. We will be able to apply it
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to control points laying in a specific close-to-strike range. It is
supposed to improve the convergence of the algorithm as far-for-
strike solutions have very small weight in cost function.

We will also introduce different quality criteria that can include a
measure of the quality of local volatility surface based on inter-strike
and inter-maturity relations. Logically for the neighboring values of
maturities or strikes (or both) the values of calibrated local volatilities
should not differ a lot except at-the-money cases.

Generating of initial population from prior distribution proposed
by Ben-Hamida and Cont can increase the speed of convergence.
According to the authors the implied volatility of in-the-money
options can be a good initial guess for the entire population.

These and other techniques including usage of different
discretization scheme, weight function, interpolation order and
sigma’s positivity constraint (currently we obtain ¢ < 0 in far-from-
strike cases) can significantly improve the convergence as well as
improve quality measures obtained.

Obtained surfaces are used to produce a forecast of the «true»
volatility surface. Such predictive analysis can be conducted using
supervised and non-supervised machine learning techniques.
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