On 0-semisimplicity of linear hulls of generators for semigroups generated by idempotents

Vitaliy M. Bondarenko, Olena M. Tertychna

Communicated by V. V. Kirichenko

Dedicated to 75th Birthday of Andrej V. Roiter

Abstract

Let I be a finite set (without 0) and J a subset of $I \times I$ without diagonal elements. Let $S(I, J)$ denotes the semigroup generated by $e_{0}=0$ and $e_{i}, i \in I$, with the following relations: $e_{i}^{2}=e_{i}$ for any $i \in I, e_{i} e_{j}=0$ for any $(i, j) \in J$. In this paper we prove that, for any finite semigroup $S=S(I, J)$ and any its matrix representation M over a field k, each matrix of the form $\sum_{i \in I} \alpha_{i} M\left(e_{i}\right)$ with $\alpha_{i} \in k$ is similar to the direct sum of some invertible and zero matrices. We also formulate this fact in terms of elements of the semigroup algebra.

Introduction

We study matrix representations over a field k of semigroups generated by idempotents.

Let I be a finite set without 0 and J a subset of $I \times I$ without the diagonal elements $(i, i), i \in I$. Let $S(I, J)$ denotes the semigroup with zero generated by $e_{i}, i \in I \cup 0$, with the following defining relations:

1) $e_{0}^{2}=e_{0}, e_{0} e_{i}=e_{i} e_{0}=e_{0}$ for any $i \in I \cup 0$, i. e. $e_{0}=0$ is the zero element;

[^0]2) $e_{i}^{2}=e_{i}$ for any $i \in I$;
3) $e_{i} e_{j}=0$ for any pair $(i, j) \in J$.

Every semigroup $S(I, J) \in \mathcal{I}$ is called a semigroup generated by idempotents with partial null multiplication (see, e.g., [2]). The set of all semigroups $S(I, J)$ with $|I|=\mathrm{n}$ will be denoted by \mathcal{I}_{n}. Put $\mathcal{I}=\cup_{n=1}^{\infty} \mathcal{I}_{n}$.

With each semigroup $S=S(I, J) \in \mathcal{I}$ we associate the directed graph $\Lambda(S)$ with set of vertices $\Lambda_{0}(S)=\left\{e_{i} \mid i \in I\right\}$ and set of arrows $\Lambda_{1}(S)=\left\{e_{i} \rightarrow e_{j} \mid(i, j) \in J\right\}$. Denote by $\bar{\Lambda}(S)$ the directed graph which is the complement of the graph $\Lambda(S)$ to the full directed graph without loops, i.e. $\bar{\Lambda}_{0}(S)=\Lambda_{0}(S)$ and $e_{i} \rightarrow e_{j}$ belongs to $\bar{\Lambda}_{1}(S)$ if and only if $i \neq j$ and $e_{i} \rightarrow e_{j}$ does not belong to $\Lambda_{1}(S)$. Obviously, the semigroup $S \in \mathcal{I}$ is uniquely determined by each of these directed graphs.

In [1] the authors proved that a semigroup $S=S(I, J)$ is finite if and only if the graph $\bar{\Lambda}(S)$ is acyclic.

We call a quadratic matrix A over a field $k \alpha$-semisimple, where $\alpha \in k$, if one of the following equivalent conditions holds:
a) $\operatorname{rank}(A-\alpha E)^{2}=\operatorname{rank}(A-\alpha E)(E$ denotes the identity matrix $)$;
b) $A-\alpha E$ is similar to the direct sum of some invertible and zero matrices;
c) the minimal polynomial $m_{A}(x)$ of A is not devided by $(x-\alpha)^{2}$;
d) there is a polynomial $f(x)=(x-\alpha) g(x)$ such that $g(\alpha) \neq 0$ and $f(A)=0$.

If A is α-semisimple for all $\alpha \in k$, then it is obviously semisimple in the classical sense.

In this paper we study 0 -semisimple matrices associated with matrix representations of a finite semigroup S from \mathcal{I} (formulating also the received results in terms of elements of the semigroup algebra).

1. Formulation of the main results

Let S be a semigroup and k be a field. Let $M_{m}(k)$ denotes the algebra of all $m \times m$ matrices with entries in k.

A matrix representation of S (of degree m) over k is a homomorphism R from S to the multiplicative semigroup of $M_{m}(k)$. If there is a zero (resp. an identity) element $a \in S$, one can assume that the matrix $R(a)$ is
zero (resp. identity) ${ }^{1}$. Two representation $R: S \rightarrow M_{m}(k)$ and $R^{\prime}: S \rightarrow$ $M_{m}(k)$ are called equivalent if there is an invertible matrix C such that $C^{-1} R(x) C=R^{\prime}(x)$ for all $x \in S$.

In this paper we prove the following theorem ${ }^{2}$.
Theorem 1. Let $S=S(I, J)$ be a finite semigroup from \mathcal{I} and R a matrix representation of S. Then, for any $\alpha_{i} \in k$, where i runs over I, the matrix $\sum_{i \in I} \alpha_{i} R\left(e_{i}\right)$ is 0-semisimple.

Reformulate the theorem in terms of elements of the semigroup algebra $k S^{1}$, where $S^{1}=S \cup\{1\}$. As usual, we identify the zero element of the semigroup with the zero element of the semigroup algebra; then

$$
k S^{1}=\left\{\sum_{s \in S \backslash 0} \beta_{s} s+\beta_{1} 1 \mid \beta_{s}, \beta_{1} \in k\right\} .
$$

We call an element $g \in k S^{1} 0$-semisimple if the minimal polynomial $m_{g}(x)$ of g is not devided by x^{2}.

Set $\mathcal{E}_{I}=\left\{e_{i} \mid i \in I\right\}$ and let $k \mathcal{E}_{I}$ denotes the k-linear hull of the generators $e_{i} \in \mathcal{E}_{I}$, i. e. $k \mathcal{E}_{I}=\left\{\sum_{i \in I} \alpha_{i} e_{i} \mid \alpha_{i} \in k\right\}$.

Theorem 1 is equivalent to the following one.
Theorem 2. Let $S=S(I, J)$ be a finite semigroup from \mathcal{I}. Then any element $g \in k \mathcal{E}_{I}$ is 0 -semisimple.

Note that Theorem 1 follows from the results of $[2,3]$ on a normal form of matrix representations of finite semigroups $S(I, J)$, but here we prove this fact directly.

2. Proof of Theorem 1

We apply induction on $n=|I|$. The case $n=1$ is obvious since any matrix representation of the semigroup $S(\{1\}, \varnothing)$ is given by an idempotent matrix.

Suppose that Theorem 1 is proved for all matrix representations of all finite semigroups $S(I, J) \in \mathcal{I}_{n}$, and prove that the theorem holds for $S(I, J) \in \mathcal{I}_{n+1}$.

[^1]Let $S=S(I, J)$ be an arbitrary finite semigroup from \mathcal{I}_{n+1}. One may assume without loss of generality that $I=\{1,2, \ldots, n+1\}$. We show that for a fixed matrix representation R of $S(I, J)$ and a vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in k^{n+1}$, the matrix $P(\alpha)=P\left(\alpha_{1}, \ldots, \alpha_{n+1}\right)=$ $\sum_{i=1}^{n+1} \alpha_{i} R\left(e_{i}\right)$ is 0 -semisimple.

Put $A_{1}=R\left(e_{1}\right), \ldots, A_{n+1}=R\left(e_{n+1}\right)$. Then $A_{i}^{2}=A_{i}$ for all $i \in I$, $A_{i} A_{j}=0$ for all $(i, j) \in J$ and $P(\alpha)=\alpha_{1} A_{1}+\ldots \alpha_{n+1} A_{n+1}$.

Since the directed graph $\bar{\Lambda}(S)$ is acyclic (see Introduction), one can fix a vertex e_{l} such that there are no arrows $l \rightarrow s$, where $s \in I$. Consider the subsemigroup S^{\prime} of S generated by $e_{0}^{\prime}=e_{0}, e_{1}^{\prime}=e_{1}, \ldots, e_{l-1}^{\prime}=$ $e_{l-1}, e_{l}^{\prime}=e_{l+1}, \ldots, e_{n}^{\prime}=e_{n+1}$. Obviously, the directed graph $\bar{\Lambda}\left(S^{\prime}\right)$ coincides with $\bar{\Lambda}(S) \backslash e_{l}$. By the induction hypothesis for the restriction T of the representation R on S^{\prime}, the matrix

$$
\alpha_{1} A_{1}+\ldots+\alpha_{l-1} A_{l-1}+\alpha_{l+1} A_{l+1}+\ldots+\alpha_{n+1} A_{n+1}
$$

is 0 -semisimple. Denote this matrix by $P^{\prime}\left(\alpha_{1}, \ldots, \alpha_{l-1}, \alpha_{l+1}, \ldots, \alpha_{n+1}\right)=$ $P^{\prime}\left(\alpha^{\prime}\right)$, where $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{l-1}, \alpha_{l+1}, \ldots, \alpha_{n+1}\right)$. Then

$$
P(\alpha)=P^{\prime}\left(\alpha^{\prime}\right)+\alpha_{l} A_{l}
$$

From the fact that there are no arrows $l \rightarrow s$ it follows that, for $j \neq l$, $e_{l} e_{j}=0$ and consequently $A_{l} A_{j}=0$. Then $A_{l} P^{\prime}\left(\alpha^{\prime}\right)=0$ and it remains only to apply the following statement: if A is an idempotent matrix, B is a 0 -semisimple matrix and $A B=0$ then $\gamma A+\delta B$ is 0 -semisimple for any $\gamma, \delta \in k$.

Instead we prove a more general statement.
Proposition 1. Let A and B be 0-semisimple matrices of size $m \times m$ such that $A B=0$. Then, for any $\gamma, \delta \in k$, the matrix $\gamma A+\delta B$ is 0 -semisimple.

Because λM with $\lambda \in k$ is 0 -semisimple provided that so is M, it is sufficient to consider the case $\gamma=\delta=1$.

By condition b) of the definition of a 0-semisimple matrix there is an invertible matrix X such that

$$
X^{-1} A X=\left(\begin{array}{c|c}
A_{0} & 0 \tag{1}\\
\hline 0 & 0
\end{array}\right)
$$

where A_{0} is invertible. From $A B=0$ it follows that

$$
X^{-1} B X=\left(\begin{array}{c|c}
0 & 0 \tag{2}\\
\hline P & Q
\end{array}\right)
$$

for some matrices P and Q (the matrices in the right parts of (1) and (2) are partitioned conformally).

From condition a) for the matrix B (see the definition of a 0 -semisimple matrix) we have that

$$
\begin{equation*}
\operatorname{rank} Q(P \mid Q)=\operatorname{rank}(P \mid Q) \tag{3}
\end{equation*}
$$

But since $\operatorname{rank} Q(P \mid Q) \leq \operatorname{rank} Q$ (by the formula $\operatorname{rank} M N \leq$ $\operatorname{rank} M$) and $\operatorname{rank}(P \mid Q) \geq \operatorname{rank} Q$, it follows from (3) that

$$
\begin{equation*}
\operatorname{rank}(P \mid Q)=\operatorname{rank} Q \tag{4}
\end{equation*}
$$

and consequently there exists an invertible matrix Y such that $P=Q Y$. Then

$$
\left(\begin{array}{c|c}
E_{1} & 0 \tag{5}\\
\hline-Y & E_{2}
\end{array}\right)^{-1}\left(\begin{array}{c|c}
0 & 0 \\
\hline P & Q
\end{array}\right)\left(\begin{array}{c|c}
E_{1} & 0 \\
\hline-Y & E_{2}
\end{array}\right)=\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & Q
\end{array}\right)
$$

where E_{1}, E_{2} are the identical matrices.
From (2) and (5) it follows that the 0 -semisimple matrix B is similar to the matrix

$$
\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & Q
\end{array}\right)
$$

and hence the matrix Q is 0 -semisimple. Then (by condition b) of the definition of a 0 -semisimple matrix) there is an invertible matrix Z such that

$$
Z^{-1} Q Z=\left(\begin{array}{c|c}
Q_{0} & 0 \\
\hline 0 & 0
\end{array}\right)
$$

where Q_{0} is invertible, and consequently

$$
\left(\begin{array}{c|c}
E_{3} & 0 \tag{6}\\
\hline 0 & Z
\end{array}\right)^{-1}\left(\begin{array}{c|c}
0 & 0 \\
\hline P & Q
\end{array}\right)\left(\begin{array}{c|c}
E_{3} & 0 \\
\hline 0 & Z
\end{array}\right)=\left(\begin{array}{c|c|c}
0 & 0 & 0 \\
\hline P_{0} & Q_{0} & 0 \\
\hline P_{1} & 0 & 0
\end{array}\right)
$$

where E_{3} is the identical matrix and $\left(\frac{P_{0}}{P_{1}}\right)=Z^{-1} P$; moreover by the equality (4) we have that

$$
\begin{equation*}
P_{1}=0 \tag{7}
\end{equation*}
$$

So, if one denotes the product of the matrices X and $\left(\begin{array}{c|c}E_{3} & 0 \\ \hline 0 & Z\end{array}\right)$ by T, then (see (1), (2), (6), (7))

$$
T^{-1} A T=\left(\begin{array}{c|c|c}
A_{0} & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right), \quad T^{-1} B T=\left(\begin{array}{c|c|c}
0 & 0 & 0 \\
\hline P_{0} & Q_{0} & 0 \\
\hline 0 & 0 & 0
\end{array}\right)
$$

from which it follows that the matrix $A+B$ is similar to the direct sum of the invertible matrix

$$
\left(\begin{array}{c|c}
A_{0} & 0 \\
\hline P_{0} & Q_{0}
\end{array}\right)
$$

and some zero matrix.
Proposition 1, and therefore Theorem 1, are proved.

References

[1] V. M. Bondarenko, O. M. Tertychna, On infiniteness of type of infinite semigroups generated by idempotents with partial null multiplication, Trans. Inst. of Math. of NAS of Ukraine, N3 (2006), pp. 23-44 (in Russian).
[2] V. M. Bondarenko, O. M. Tertychna, On tame semigroups generated by idempotents with partial null multiplication // Algebra Discrete Math. - 2008. - N4. - P. 15-22.
[3] O. M. Tertychna, Matrix representations of semigroups generated by idempotents with partial null multiplication. Thesis for a candidate's degree by speciality 01.01 .06 - algebra and number theory. - Kyiv National Taras Shevchenko University, 2009. 167 p (In Ukrainian).

Contact information

V. M. Bondarenko Institute of Mathematics, NAS, Kyiv, Ukraine E-Mail: vitalij.bond@gmail.com
O. M. Tertychna Vadim Hetman Kyiv National Economic University, Kiev, Ukraine E-Mail: olena-tertychna@mail.ru

Received by the editors: 19.11.2012
and in final form 09.01.2013.

[^0]: 2010 MSC: 16G, 20M30.
 Key words and phrases: semigroup, matrix representations, defining relations, 0 -semisimple matrix.

[^1]: ${ }^{1}$ It is easy to show that in this case we "lose" the only indecomposable representation P of degree 1 with $P(x)=0$ for all $x \in S \backslash a$ and $P(a)=1$ (resp. $P(x)=0$ for all $x \in S$).
 ${ }^{2}$ Notice that the theorem is also valid without the restrictions which has been discussed in note 1 .

