УДК 512.5+512.6

V. M. Bondarenko

Institute of Mathematics, NAS, Kyiv
E-mail: vit-bond@imath.kiev.ua

O. M. Tertychna

Kyiv National Taras Shevchenko University
E-mail: olena-tertychna@mail.ru

On representations of the semigroups $S(I, J)$ with acyclic quiver

In this paper we study representations of semigroups (over a field k) generated by idempotents with partial null multiplication in the case when the corresponding quiver has not oriented cycles.

We will use the definitions, notions and conventions of [1]. The main of them will be repeated.

Let I be a finite set without 0 and J a subset of $I \times I$ without elements of the form (i, i). We define $S(I, J)$ to be the semigroup with generators e_{i}, where i runs through all elements of $I \cup 0$, and the following relations:

1) $e_{0}=0$;
2) $e_{i}^{2}=e_{i}$ for every $i \in I$;
3) $e_{i} e_{j}=0$ for every pair $(i, j) \in J$.

The set of the semigroups of the form $S(I, J)$ is denoted by \mathcal{I}. We call $S(I, J) \in \mathcal{I}$ a semigroup generated by idempotents with partial null multiplication.
(C) V. M. Bondarenko, O. M. Tertychna, 2009

For a finite set X and $Y \subseteq X \times X$, we denote by $Q(X, Y)$ the quiver with vertex set X and arrows $a \rightarrow b,(a, b) \in Y$. We also put

$$
\bar{Y}=\{(a, b) \in(X \times X) \backslash Y \mid a \neq b\} .
$$

Throughout, k denotes a field.
Let S be a semigroup. A matrix representation of S (of degree n) over k is a homomorphism T from S to the multiplicative semigroup of $M_{n}(k)$. If there is an identity (resp. zero) element $a \in S$, we assume that the matrix $T(a)$ is identity (resp. zero). In terms of vector spaces and linear transformations, a representation of S over k is a homomorphism φ from S to the multiplicative semigroup of the algebra $E n d_{k} U$ with U being a finitedimensional vector space. Two representation $\varphi: S \rightarrow E n d_{k} U$ and $\varphi^{\prime}: S \rightarrow E n d_{k} U^{\prime}$ are called equivalent if there is a linear map $\sigma: U \rightarrow U^{\prime}$ such that $\varphi \sigma=\varphi^{\prime}$.

A representation $\varphi: S \rightarrow E n d_{k} U$ of S is also denoted by (U, φ). By the dimension of (U, φ) one means the dimension of U. The representations of S form a category which will be denoted by $\operatorname{rep}_{k} S$ (it has as morphisms from (U, φ) to $\left(U^{\prime}, \varphi\right)$ the maps σ such that $\varphi \sigma=\varphi^{\prime}$).

In this paper we study representations of semigroups $S(I, J)$ over k in the case when the quiver $Q(I, \bar{J})$ is acyclic, i.e. has not oriented cycles.

Recall the notion of representations of a quiver [2].
Let $Q=\left(Q_{0}, Q_{1}\right)$ be a finite quiver with the set Q_{0} of its vertices and the set Q_{1} of its arrows $\alpha: x \rightarrow y$.

A representation of the quiver $Q=\left(Q_{0}, Q_{1}\right)$ over a field k is given by a pair $R=(V, \gamma)$ formed by a collection

$$
V=\left\{V_{x} \mid x \in Q_{0}\right\}
$$

of vector spaces V_{x} and a collection

$$
\gamma=\left\{\gamma_{\alpha} \mid \alpha: x \rightarrow y \text { runs through } Q_{1}\right\}
$$

of linear maps $\gamma_{\alpha}: V_{x} \rightarrow V_{y}$. A morphism from $R=(V, \gamma)$ to $R^{\prime}=\left(V^{\prime}, \gamma^{\prime}\right)$ is a collection $\lambda=\left\{\lambda_{x} \mid x \in Q_{0}\right\}$ of linear maps
$\lambda_{x}: V_{x} \rightarrow V_{x}^{\prime}$, such that $\gamma_{\alpha} \lambda_{y}=\lambda_{x} \gamma^{\prime}{ }_{\alpha}$ for any arrow $\alpha: x \rightarrow y$. The category of representations of $Q=\left(Q_{0}, Q_{1}\right)$ will be denoted by $\operatorname{rep}_{k} Q$.

A linear map α of $U=U_{1} \oplus \ldots U_{p}$ into $V=V_{1} \oplus \ldots V_{q}$ is identified with the matrix $\left(\alpha_{i j}\right), i=1, \ldots, p, j=1, \ldots, q$, where $\alpha_{i j}: U_{i} \rightarrow V_{j}$ are the induced linear maps.

Let $S=S(I, J)$ with $I=\{1,2, \ldots, m\}$. Define the functor

$$
F=F(I, J): \operatorname{rep}_{k} Q(I, \bar{J}) \rightarrow \operatorname{rep}_{k} S(I, J)
$$

as follows. $F=F(I, J)$ assigns to an object $(V, \gamma) \in \operatorname{rep}_{k} Q(I, \bar{J})$ the object $\left(V^{\prime}, \gamma^{\prime}\right) \in \operatorname{rep}_{k} S(I, J)$, where

$$
V^{\prime}=\oplus_{i \in I} V_{i},
$$

$\left(\gamma^{\prime}\left(e_{i}\right)\right)_{j j}=\mathbf{1}_{V_{j}}$ if $i=j,\left(\gamma^{\prime}\left(e_{i}\right)\right)_{i j}=\gamma_{i j}$ if $(i, j) \in \bar{J}$, and $\left(\gamma^{\prime}\left(e_{i}\right)\right)_{j s}=0$ in all other cases. F assigns to a morphism λ of $\operatorname{rep}_{k} Q(I, \bar{J})$ the morphism $\oplus_{i \in I} \lambda_{i}$ of $\operatorname{rep}_{k} S(I, J)$.

In [1] the first author proved that the functor $F=F(I, J)$ is full and faithful (see the only theorem).

From this theorem it follows that a semigroup $S(I, J)$ is wild if so is the quiver $Q(I, \bar{J})$ (the general definitions of tame and wild classification problems are given in [3].

In this paper we prove the following theorem.
Theorem 1. Let $S(I, J)$ be a semigroup from \mathcal{I} such that the quiver $Q(I, \bar{J})$ is acyclic.

Then each object of the category $\operatorname{rep}_{k} S(I, J)$ is isomorphic to an object of the form $X F(I, J) \oplus(W, 0)$, where $X \in \operatorname{rep}_{k} Q(I, \bar{J})$ and W is a vector space of dimension $d \geq 0$.
Proof. For simplicity, the quiver $Q(I, \bar{J})$ is designated by

$$
Q=\left(Q_{0}, Q_{1}\right) .
$$

We use the induction on m; the case $m=0,1$ are trivial.
Now let $m>1$ and $R=(U, \varphi)$ be a representation of $S(I, J)$. Fix $s \in Q_{0}$ such that there is no arrow $i \rightarrow s$; we will assume (without loss of generality) that $s=m$. Consider the subsemigroup S^{\prime}
of S generated by $e_{i}, i \in I^{\prime} \cup 0$, where $I^{\prime}=\{1, \ldots, m-1\}$. Then $S^{\prime}=S\left(I^{\prime}, J^{\prime}\right)$ with

$$
J^{\prime}=\left\{(i, j) \in I \times I \mid i, j \in I^{\prime}\right\}
$$

and $Q^{\prime}=Q\left(I^{\prime}, \overline{J^{\prime}}\right)$ is the full subquiver of Q with vertex set $Q_{0}^{\prime}=$ I^{\prime}.

Denote by $R^{\prime}=\left(U, \varphi^{\prime}\right)$ the restriction of R to $S^{\prime}\left(\varphi^{\prime}(x)=\varphi(x)\right.$ for any $x \in S^{\prime}$). It follows by induction that

$$
R^{\prime} \cong \overline{R^{\prime}}=X^{\prime} F\left(I^{\prime}, J^{\prime}\right) \oplus\left(W^{\prime}, 0\right)
$$

where X^{\prime} is a representation of the quiver $Q\left(I^{\prime}, \overline{J^{\prime}}\right)$.
Let $\overline{R^{\prime}}=\left(\bar{U}, \overline{\varphi^{\prime}}\right)$ and $X^{\prime}=\left(V^{\prime}, \gamma^{\prime}\right)$ with $V^{\prime}=\left\{V_{i}^{\prime} \mid i \in Q_{0}^{\prime}\right\}$ and

$$
\gamma^{\prime}=\left\{\gamma_{\alpha}^{\prime} \mid \alpha: i \rightarrow j \text { runs through } Q_{1}^{\prime}\right\} .
$$

Since $R^{\prime} \cong \overline{R^{\prime}}$, there exists a linear map

$$
\sigma: U \rightarrow \bar{U}=V_{1}^{\prime} \oplus V_{2}^{\prime} \oplus \ldots \oplus V_{m-1}^{\prime} \oplus W^{\prime}
$$

such that $\varphi^{\prime} \sigma=\overline{\varphi^{\prime}}$. Then the representation $R=(U, \varphi)$ is equivalent to the representation $\bar{R}=(\bar{U}, \bar{\varphi})$, where $\bar{\varphi}\left(e_{i}\right)=\overline{\varphi^{\prime}}\left(e_{i}\right)$ for any $i=1, \ldots, m-1$ and $\bar{\varphi}\left(e_{m}\right)=\varphi\left(e_{m}\right) \sigma$ (since, for $i \neq m$, $\overline{\varphi^{\prime}}\left(e_{i}\right)=\varphi^{\prime}\left(e_{i}\right) \sigma=\varphi\left(e_{i}\right) \sigma$, and so $\bar{\varphi}(x)=\varphi(x) \sigma$ for each $\left.x \in S\right)$.

We consider the representation $\bar{R}=(\bar{U}, \bar{\varphi})$ in more detail. Put $V_{m}=W^{\prime}$ and consider $\bar{\varphi}$ as a matrix, taking into account that

$$
\bar{U}=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m-1} \oplus V_{m} .
$$

For $(p, q) \in J$, we denote by $[p, q, i, j]$ the scalar equality

$$
\left[\bar{\varphi}\left(e_{p}\right) \bar{\varphi}\left(e_{q}\right)\right]_{i j}=0,
$$

induced by the (matrix) equality $\bar{\varphi}\left(e_{p}\right) \bar{\varphi}\left(e_{q}\right)=0$ (the last equation holds since $e_{p} e_{q}=0$ in $S(I, J)$). It follows from $[m, q, i, q]$ (for any fixed $q \neq m)$ that $\left(\bar{\varphi}\left(e_{m}\right)\right)_{i q}=0$, and consequently $\left(\bar{\varphi}\left(e_{m}\right)\right)_{i j}=0$ for any $(i, j) \in I \times I^{\prime}$.

We first consider two special cases:
a) $\bar{\varphi}_{m m}=0$;
b) $\bar{\varphi}_{m m}=\mathbf{1}=\mathbf{1}_{\mathbf{V}_{\mathbf{m}}}$.

In case a) $(\bar{\varphi})^{2}=\bar{\varphi}$ implies $\bar{\varphi}=0$ and so

$$
\bar{R}=X F(I, J) \oplus(W, 0)
$$

with $X=(V, \gamma)$, where $V=\left\{V_{1}^{\prime} \ldots, V_{m-1}^{\prime}, 0\right\}, \gamma_{\alpha}=\gamma_{\alpha}^{\prime}$ for $\alpha \in Q_{1}^{\prime}$, $\gamma_{\alpha}=0$ for $\alpha \notin Q_{1}^{\prime}$ and $W=W^{\prime}$.

In case b) an equality $[p, m, p, m$] for $(p, m) \notin \bar{J}$ implies

$$
(\bar{\varphi})_{p m}=0
$$

and so

$$
\bar{R}=X F(I, J) \oplus(W, 0)
$$

with $X=(V, \gamma)$, where $V=\left\{V_{1}^{\prime} \ldots, V_{m-1}^{\prime}, 0\right\}, \gamma_{\alpha}=\gamma_{\alpha}^{\prime}$ for $\alpha \in Q_{1}^{\prime}$, $\gamma_{\alpha}=0$ for $\alpha \notin Q_{1}^{\prime}$ and $W=W^{\prime}$.

Now we consider the general case. Since $\left(\bar{\varphi}_{m m}\right)^{2}=\bar{\varphi}_{m m}$, there is an invertible map $\nu=\left(\nu_{1}, \nu_{2}\right): V_{m} \rightarrow W_{1} \oplus W_{2}$ such that

$$
\bar{\varphi}_{m m}\left(\nu_{1}, \nu_{2}\right)=\left(\nu_{1}, \nu_{2}\right)\left(\begin{array}{ll}
\mathbf{1} & 0 \\
0 & 0
\end{array}\right),
$$

where $\mathbf{1}=\mathbf{1}_{W_{1}}$. Then the representation $\overline{R^{\prime}}=\left(\bar{U}, \overline{\varphi^{\prime}}\right)$ is isomorphic to the the representation $\widehat{R^{\prime}}=\left(\widehat{U}, \widehat{\varphi^{\prime}}\right)$, where

$$
\widehat{U}=\widehat{U}_{1} \oplus \widehat{U_{2}} \oplus \ldots \oplus \widehat{U}_{m+1}
$$

with $\widehat{U}_{i}=V_{i}$ for $i=1, \ldots m-1, \widehat{U}_{m}=W_{1}, \widehat{U}_{m+1}=W_{2}$, and $\widehat{\varphi^{\prime}}\left(e_{i}\right)=\overline{\varphi^{\prime}}\left(e_{i}\right)$ for $i=1, \ldots m-1,\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{i j}=\left(\overline{\varphi^{\prime}}\left(e_{m}\right)\right)_{i j}$ for $(i, j) \in I^{\prime} \times I^{\prime},\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{i j}=0$ for $i=m, m+1, j \in I^{\prime}$, $\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{m, m j}=\mathbf{1}=\mathbf{1}_{W_{1}},\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{m, m+1}=0,\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{m+1, m}=0$, $\left(\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{m+1, m+1}=0$ (for instance, one can take the isomorphism $\beta: \widehat{R^{\prime}} \rightarrow \overline{R^{\prime}}$ with $\widehat{\varphi^{\prime}}\left(e_{i}\right)=\mu^{-1} \overline{R^{\prime}} \mu$, where $\mu=\mathbf{1}_{U_{1}} \oplus \ldots \oplus \mathbf{1}_{U_{m-1}} \oplus \nu$.

From $\left(\widehat{\varphi^{\prime}}\left(e_{i}\right)\right)^{2}=\widehat{\varphi^{\prime}}\left(e_{i}\right)$ it follows that $\left.\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{i, m+1}=0$ for any $i \in I^{\prime}$ (see the partial case a)); (then $\left.\widehat{\varphi^{\prime}}\left(e_{m}\right)\right)_{i, m+1}=0$ for any $i=1, \ldots, m+1)$. From the scalar equalities $[p, m, p, m]$ for $(p, m) \notin \bar{J}$ implies $(\widehat{\varphi})_{p m}=0$ (see the partial case b)). Thus,

$$
\bar{R}=(\widehat{U}, \widehat{\varphi}) \cong R=(U, \varphi)
$$

has the form $X F(I, J) \oplus(W, 0)$, where $X=(V, \gamma)$ with $V=$ $\left\{\widehat{U}_{i} \mid i \in Q_{0}\right\}, \gamma=\left\{\gamma_{\alpha} \mid \alpha: i \rightarrow j\right.$ runs through $\left.Q_{1}\right\}$ with $\gamma_{\alpha}=\gamma_{\alpha}^{\prime}$ for $\alpha \in Q_{1}^{\prime}, \gamma_{\alpha}=\widehat{\varphi}\left(e_{m}\right)_{i j}$ for $\alpha \notin Q_{1}^{\prime}$ (then $j=m$), and

$$
W=\widehat{W_{m+1}},
$$

as claimed.
Let $\operatorname{rep}_{k}^{\circ} S(I, J)$ denotes the full subcategory of the category $\operatorname{rep}_{k} S(I, J)$ consisting of all objects that have no objects ($W, 0$), with $W \neq 0$, as direct summands.

Then from the Theorem of [1] and Theorem 1 it follows the following statement.
Theorem 2. Let $S(I, J)$ be as in Theorem 1. Then the functor $F=F(I, J)$, viewed as a functor from $\operatorname{rep}_{k} Q(I, \bar{J})$ to $\operatorname{rep}_{k}^{\circ} S(I, J)$, is an equivalence of categories.

From this theorem it follows that a semigroup $S(I, J)$ and the quiver $Q(I, \bar{J}$ have the same representation type (in the case when $Q(I, \bar{J}$ is acyclic $)$.

References

[1] V. M. Bondarenko. On connections between representations of semigroups $S(I, J)$ and representations of quivers// This book
[2] P. Gabriel. Unzerlegbare Darstellungen // Manuscripts Math. - 1972. 6. - pp. 71-103,309.
[3] Yu. A. Drozd. Tame and wild matrix problems // Lecture Notes in Math. - 1980. - 832. - pp. 242-258.

