Time series forecasting of agricultural product prices using Elman and Jordan recurrent neural networks

dc.contributor.authorKmytiuk, Tetiana
dc.contributor.authorMajore, Ginta
dc.date.accessioned2024-04-01T09:22:42Z
dc.date.available2024-04-01T09:22:42Z
dc.date.issued2021
dc.description.abstractMost practical problems of forecasting time series are characterized by a high level of nonlinearity and nonstationarity, noise, the presence of irregular trends, jumps, and anomalous emissions. Under these conditions, statistical and mathematical assumptions limit the possibility of applying classical forecasting methods. The main disadvantage of statistical models is the difficulty of choosing the type of model and selecting its parameters. An alternative to these methods may be methods of computational intelligence, which include artificial neural networks, which can significantly improve the accuracy of time series prediction. A significant advantage of neural networks is that they are able to learn and generalize the accumulated knowledge, highlighting the hidden relationships between input and output data. At the moment, the most time series forecasting solutions based on this toolkit involve the use of feed-forward neural networks (perceptrons, convolutional neural networks, etc.). The article provides an overview of the architecture, principles of operation, and methods of teaching known models of recurrent neural networks. In the study, we built and compared the architectures of Elman and Jordan neural networks for solving the problem of forecasting prices for agricultural products. The corresponding statistical comparisons of the above models are also given. The experimental results show that such approach provides high accuracy in predicting the values from the price of agriculture products.
dc.identifier.citationKmytiuk T. Time series forecasting of agricultural product prices using Elman and Jordan recurrent neural networks / Tetiana Kmytiuk, Ginta Majore // Нейро-нечіткі технології моделювання в економіці : наук.-анал. журн. / М-во освіти і науки України, ДВНЗ «Київ. нац. екон. ун-т ім. Вадима Гетьмана» ; [редкол.: А. В. Матвійчук (голов. ред.) та ін.]. – Київ : КНЕУ, 2021. – № 10. – С. 67–85.
dc.identifier.doi10.33111/nfmte.2021.067
dc.identifier.issn2306-3289
dc.identifier.urihttps://ir.kneu.edu.ua/handle/2010/43385
dc.language.isoen
dc.publisherДВНЗ «Київський національний економічний університет імені Вадима Гетьмана»
dc.subjectforecasting
dc.subjectagricultural product prices
dc.subjectrecurrent neural network
dc.subjectElman network
dc.subjectJordan network
dc.titleTime series forecasting of agricultural product prices using Elman and Jordan recurrent neural networks
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nntme_21_10-3.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections