Browse
Recent Submissions
Item Прогнозування вилову риби і морепродуктів у глобальній економіці(ДВНЗ «Київський національний економічний університет імені Вадима Гетьмана», 2020) Чужиков, Віктор Іванович; Chuzhykov, Viktor; Мірошниченко, Ігор Вікторович; Miroshnychenko, Ihor; Лук’яненко, Олександр Д.; Lukianenko, OleksandrВ статті запропоновано новий науковий підхід до прогнозування вилову риби та морепродуктів, що ґрунтується на застосуванні математичного апарату нейронних мереж (а саме, карт самоорганізації Кохонена) та економетричних моделей (авторегресійних функцій). Карти самоорганізації надали можливість здійснити кластеризацію країн світу за показниками вилову риби та морепродуктів, що дозволило визначити групи країн та територій, стан та розвиток рибного сектору яких є подібними між собою. Зважаючи на надто різнорідний стан цієї галузі за різними країнами процедуру кластеризації довелось здійснити повторно ще в рамках окремих груп країн. Після отримання однорідної вибірки для вирішення задачі прогнозування обсягів вилову риби та морепродуктів запропоновано застосувати моделі регресії часових рядів. В ході ряду експериментів було визначено найкращу прогностичну модель з порядком авторегресії AR(5). Отриманий прогноз та показники якості моделі вказують на доцільність застосування запропонованого кількарівневого підходу до побудови прогнозних моделей, що ґрунтується на кластеризації країн світу та формуванні однорідних навчальних вибірок. Подібний підхід може бути використаний у широкому спектрі економічних та управлінських задач. The article proposes a new scientific approach to forecasting the catch of fish and seafood, based on the use of the mathematical apparatus of neural networks (namely, Kohonen self-organizing maps) and econometric models (autoregressive functions). Self-organizing maps provided an opportunity to cluster the countries of the world according to the indicators of fish and seafood catch, which made it possible to identify countries and areas whose state and development of the fisheries sector are similar to each other. Due to the too heterogeneous state of this industry in different countries, the clustering procedure had to be repeated even within certain groups of countries. After obtaining a homogeneous sampling to solve the problem of predicting the volume of fish and seafood catches, it is proposed to apply time series regression models. Through a series of experiments, fifth-order autoregression AR(5) was determined as the best predictive model. The forecast obtained and model quality indicators approve the feasibility of applying the proposed multi-level approach to building predictive models, which is based on the clustering of countries of the world and the formation of homogeneous training samples. A similar approach can be used in a wide range of economic and managerial tasks.Item Machine learning approach of analysis of emotional polarity of electronic social media(ДВНЗ «Київський національний економічний університет імені Вадима Гетьмана», 2020) Derbentsev, Vasyl; Дербенцев, Василь Джоржович; Дербенцев, Василий Джорджевич; Bezkorovainyi, Vitalii; Безкоровайний, Віталій Сергійович; Бескоровайный, Виталий Сергеевич; Akhmedov, Renat; Ахмедов, Ренат РамазановичThis paper proposes a new approach to evaluating the emotional polarity (or Sentiment Analysis) of electronic social media texts. For this purpose both conventional Machine Learning (Logistic Regression and Support Vector Machine), and Deep Neural Networks approaches (Fully Connected and Convolutional Neural Networks) were used. As vector representations of words, we used both the frequency-based and pretrained words embeddings Word2vec and GloVe (with embedding dimensions of size 100 and 300). For the selected English-language IMDb Movie Reviews dataset the classification accuracy using the Logistic Regression model was 87%, the Support Vector Machine – 87.5%, the Fully Connected Neural Network – 88%, and the Convolutional Network – 90%. The accuracy of the proposed models is a quite acceptable for practical use-cases and is not inferior to cutting-edge Natural Language Processing solutions in the field of Sentiment Analysis, which opens up good prospects for further research. У статті пропонується новий підхід до оцінки емоційної полярності (або аналізу настроїв) електронних текстів у соціальних мережах. Для цього використовувалися як класичні методи машинного навчання (логістична регресія та метод опорних векторів), так і інструментарій глибоких нейронних мереж (повнозв’язні та згорткові нейромережі). Векторне представлення ґрунтувалось на частотних та попередньо навчених вкладеннях слів Word2vec і GloVe (з розмірами вкладення 100 і 300). Для вибраного англомовного набору даних IMDb Movie Reviews точність класифікації за допомогою моделі логістичної регресії становила 87%, машини опорних векторів – 87,5%, повнозв’язної нейронної мережі – 88% і згорткової мережі – 90%. Точність запропонованих моделей є цілком прийнятною для практичних ситуацій і не поступається передовим рішенням у сфері обробки природньої мови за напрямом аналізу настроїв, що відкриває обнадійливі перспективи для подальших досліджень.