Machine learning approaches for financial time series forecasting

dc.contributor.authorDerbentsev, Vasyl
dc.contributor.authorДербенцев, Василь Джоржович
dc.contributor.authorДербенцев, Василий Джорджевич
dc.contributor.authorMatviichuk, Andrii
dc.contributor.authorМатвійчук, Андрій Вікторович
dc.contributor.authorМатвийчук, Андрей Викторович
dc.contributor.authorDatsenko, Nataliia
dc.contributor.authorДаценко, Наталія Володимирівна
dc.contributor.authorДаценко, Наталья Владимировна
dc.contributor.authorBezkorovainyi, Vitalii
dc.contributor.authorБезкоровайний, Віталій Сергійович
dc.contributor.authorБезкоровайный, Виталий Сергеевич
dc.contributor.authorAzaryan, Albert
dc.date.accessioned2023-12-15T11:56:13Z
dc.date.available2023-12-15T11:56:13Z
dc.date.issued2021
dc.description.abstractThis paper is discusses the problems of the short-term forecasting of financial time series using supervised machine learning (ML) approach. For this goal, we applied several the most powerful methods including Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forests (RF) and Stochastic Gradient Boosting Machine (SGBM). As dataset were selected the daily close prices of two stock index: SP 500 and NASDAQ, two the most capitalized cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), and exchange rate of EUR-USD. As features we used only the past price information. To check the efficiency of these models we made out-of-sample forecast for selected time series by using one step ahead technique. The accuracy rates of the forecasted prices by using ML models were calculated. The results verify the applicability of the ML approach for the forecasting of financial time series. The best out of sample accuracy of short-term prediction daily close prices for selected time series obtained by SGBM and MLP in terms of Mean Absolute Percentage Error (MAPE) was within 0.46-3.71 %. Our results are comparable with accuracy obtained by Deep learning approaches.
dc.identifier.citationMachine learning approaches for financial time series forecasting [Electronic resource] / Vasily Derbentsev, Andriy Matviychuk, Nataliia Datsenko [et al.] // Monitoring, Modeling & Management of Emergent Economy (M3E2–MLPEED 2020) : proceedings of the selected papers of the special edition of international conference, Odessa, Ukraine, July 13–18, 2020 / [ed.: A. Kiv]. – Electronic text data. – Odessa, 2020. – Vol. 2713 : Machine Learning for Prediction of Emergent Economy Dynamics. – P. 434–450. – Mode of access: https://ceur-ws.org/Vol-2713/paper47.pdf. – Title from screen.
dc.identifier.issn1613-0073
dc.identifier.urihttps://ir.kneu.edu.ua/handle/2010/41675
dc.language.isoen
dc.publisherCEUR Workshop Proceedings
dc.subjectfinancial time series
dc.subjectshort-term forecasting
dc.subjectmachine learning
dc.subjectsupport vector machine
dc.subjectrandom forest
dc.subjectgradient boosting
dc.subjectmultilayer perceptron
dc.titleMachine learning approaches for financial time series forecasting
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
D_119325.pdf
Size:
3.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: