Sentiment Analysis of Electronic Social Media Based on Deep Learning

dc.contributor.authorDerbentsev, Vasyl
dc.contributor.authorДербенцев, Василь Джоржович
dc.contributor.authorДербенцев, Василий Джорджевич
dc.contributor.authorBezkorovainyi, Vitalii
dc.contributor.authorБезкоровайний, Віталій Сергійович
dc.contributor.authorБезкоровайный, Виталий Сергеевич
dc.contributor.authorMatviichuk, Andrii
dc.contributor.authorМатвійчук, Андрій Вікторович
dc.contributor.authorМатвийчук, Андрей Викторович
dc.contributor.authorPomazun, Oksana
dc.contributor.authorПомазун, Оксана Миколаївна
dc.contributor.authorПомазун, Оксана Николаевна
dc.contributor.authorHrabariev, Andrii
dc.contributor.authorГрабарєв, Андрій Володимирович
dc.contributor.authorГрабарев, Андрей Владимирович
dc.contributor.authorHostryk, Oleksii
dc.date.accessioned2023-12-15T08:32:34Z
dc.date.available2023-12-15T08:32:34Z
dc.date.issued2022-11
dc.description.abstractThis paper describes Deep Learning approach of sentiment analyses which is an active research subject in the domain of Natural Language Processing. For this purpose we have developed three models based on Deep Neural Networks (DNNs): Convolutional Neural Network (CNN), and two models that combine convolutional and recurrent layers based on Long-Short-Term Memory (LSTM), such as CNN-LSTM and Bi-Directional LSTM-CNN (BiLSTM-CNN). As vector representations of words were used GloVe and Word2vec word embeddings. To evaluate the performance of the models, were used IMDb Movie Reviews and Twitter Sentiment 140 datasets, and as a baseline classifier was used Logistic Regression. The best result for IMDb dataset was obtained using CNN model (accuracy 90.1%), and for Sentiment 140 the model based on BiLSTM-CNN showed the highest accuracy (82.1%) correspondinly. The accuracy of the proposed models is a quite acceptable for practical use and comparable to state of the art models.
dc.identifier.citationSentiment Analysis of Electronic Social Media Based on Deep Learning [Electronic resource] / Vasily D. Derbentsev, Vitalii S. Bezkorovainyi, Andriy V. Matviychuk [et al.] // Monitoring, Modeling Management of Emergent Economy : proceedings of 10th international conference on monitoring, modeling management of emergent economy (M3E2 2022). – Electronic text data. – 2022. – P. 163–175. – Title from screen.
dc.identifier.doi10.5220/0011932300003432
dc.identifier.isbn978-989-758-640-8
dc.identifier.issn2975-9234
dc.identifier.urihttps://ir.kneu.edu.ua/handle/2010/41646
dc.language.isoen
dc.publisherCEUR Workshop Proceedings
dc.subjectSentiment Analysis
dc.subjectSocial Media
dc.subjectDeep Learning
dc.subjectConvolutional Neural Networks
dc.subjectLong Short-Term Memory
dc.subjectWord Embeddings
dc.titleSentiment Analysis of Electronic Social Media Based on Deep Learning
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
D_119323.pdf
Size:
604.32 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: